Лабораторная работа №1

Освоение программного обеспечения для работы с технологией CUDA. Примитивные операции над векторами.

Цель работы. Ознакомление и установка программного обеспечения для работы с программно-аппаратной архитектурой параллельных вычислений(CUDA). Реализация одной из примитивных операций над векторами.

В качестве вещественного типа данных необходимо использовать тип данных double. Все результаты выводить с относительной точностью 10^{-10} . Ограничение: $n < 2^{25}$.

Вариант 1. Сложение векторов.

Входные данные. На первой строке задано число n -- размер векторов. В следующих 2-х строках, записано по n вещественных чисел -- элементы векторов.

Выходные данные. Необходимо вывести n чисел -- результат сложения исходных векторов.

Пример:

Входной файл	Выходной файл
3 1 2 3 4 5 6	5.000000000e+00 7.000000000e+00 9.000000000e+00

Вариант 2. Вычитание векторов.

Входные данные. На первой строке задано число n -- размер векторов. В следующих 2-х строках, записано по n вещественных чисел -- элементы векторов.

Выходные данные. Необходимо вывести n чисел -- результат вычитания исходных векторов.

Пример:

Входной файл	Выходной файл
3 1 2 3	-3.000000000e+00 -3.000000000e+00 -3.000000000e+00
4 5 6	

Вариант 3. Поэлементное умножение векторов.

Входные данные. На первой строке задано число n -- размер векторов. В следующих 2-х строках, записано по n вещественных чисел -- элементы векторов.

Выходные данные. Необходимо вывести п чисел -- результат поэлементного умножения исходных векторов.

Пример:

Входной файл	Выходной файл
3 1 2 3 4 5 6	4.000000000e+00 1.000000000e+01 1.800000000e+01

Вариант 4. Поэлементное нахождение минимума векторов.

Входные данные. На первой строке задано число n -- размер векторов. В следующих 2-х строках, записано по n вещественных чисел -- элементы векторов.

Выходные данные. Необходимо вывести п чисел -- результат поэлементного нахождения минимума исходных векторов.

Пример:

Входной файл	Выходной файл
3 1 5 3 4 2 6	1.000000000e+00 2.000000000e+00 3.000000000e+00

Вариант 5. Поэлементное нахождение максимума векторов.

Входные данные. На первой строке задано число n -- размер векторов. В следующих 2-х строках, записано по n вещественных чисел -- элементы векторов.

Выходные данные. Необходимо вывести п чисел -- результат поэлементного нахождения максимума исходных векторов.

Пример:

Входной файл	Выходной файл
3 1 5 3 4 2 6	4.000000000e+00 5.000000000e+00 6.000000000e+00

Вариант 6. Поэлементное возведение в квадрат вектора.

Входные данные. На первой строке задано число n -- размер векторов. На следующей строке записано n вещественных чисел -- элементы вектора.

Выходные данные. Необходимо вывести п чисел -- результат поэлементного возведения в квадрат исходного вектора.

Пример:

Входной файл	Выходной файл
3 1 5 3	1.000000000e+00 2.500000000e+01 9.000000000e+00

Вариант 7. Поэлементное вычисление модуля вектора.

Входные данные. На первой строке задано число n -- размер векторов. На следующей строке записано n вещественных чисел -- элементы вектора.

Выходные данные. Необходимо вывести n чисел -- результат поэлементного вычисления модуля исходного вектора.

Пример:

Входной файл	Выходной файл
3 -1 2 -3	1.000000000e+00 2.000000000e+00 3.000000000e+00

Вариант 8. Реверс вектора.

Входные данные. На первой строке задано число n -- размер векторов. На следующей строке записано n вещественных чисел -- элементы вектора.

Выходные данные. Необходимо вывести п чисел -- результат реверса исходного вектора.

Пример:

Входной файл	Выходной файл
3 1 2 3	3.000000000e+00 2.000000000e+00 1.000000000e+00